3 Monotone Censored Data

3.1 Data Structure and Model

Let \(\{X(t) : t \in \mathbb{R}_{\geq 0}\} \) be a multivariate stochastic process indexed by time \(t \). Let \(T \) denote an endpoint of this stochastic process, and define \(X(t) = X(\min(t,T)) \). Let \(R(t) = I(T \leq t) \) be one of the components of \(X(t) \). We define the full data as \(X = \bar{X}(T) = (X(s) : s \leq T) \), where \(T \) is thus a function \(X \).

Suppose that we observe the full data process \(X(\cdot) \) up to the minimum of a univariate censoring variable \(C \) and \(T \) so that for the observed data we have:

\[
Y = (\bar{T} = \min(T,C), \Delta = I(T \leq \bar{T}) = I(C \geq T), \bar{X}(\bar{T})).
\]

We will define \(C = \infty \) if \(C > T \) so that this data structure can be represented as

\[
Y = (C, \bar{X}(C)).
\]

In the next section, we provide several important examples of this monotone censored data structure.

Let \(\mathcal{M}^F \) be a specified full data model for the distribution \(F_X \) of \(X \), and let \(\mu = \mu(F_X) \in \mathbb{R}^k \) be the full data parameter of interest. Let \(G(\cdot | X) \) be the conditional distribution of \(C \), given \(X \), and it is assumed that \(G \) satisfies CAR (i.e., \(G \in \mathcal{G}(\text{CAR}) \)). Given working models \(\mathcal{M}^{F,w} \subset \mathcal{M}^F \) and \(G \subset \mathcal{G}(\text{CAR}) \), we define the observed data model \(\mathcal{M} = \{P_{F_X,G} : F_X \in \mathcal{M}^{F,w}\} \cup \{P_{F_X,G} : G \in \mathcal{G}\} \). We also define the observed data model \(\mathcal{M}(\mathcal{G}) = \{P_{F_X,G} : F_X \in \mathcal{M}^F, G \in \mathcal{G}\} \). Candidates for the censoring model \(G \) are given below.

Let \(g(c | X) \) be the conditional density of \(C \), given \(X \), either w.r.t. a Lebesgue density or counting measure, and let \(\lambda_C(c | X) \) be the corresponding conditional hazard. Define \(A(t) \equiv I(C \leq t) \). The conditional distribution \(G \) satisfies CAR if

\[
E(dA(t) | X, \bar{A}(t-)) = E(dA(t) | \bar{A}(t-), \bar{X}(\min(t,C))).
\]

In other words, the intensity of \(A(t) \) w.r.t. the unobserved history \((X, \bar{A}(t-)) \) should equal the intensity of \(A(t) \) w.r.t. the observed history \((\bar{A}(t-), \bar{X}(\min(t,C))) \). Equivalently, \(G \) satisfies CAR if for \(c < T \)

\[
\lambda_C(c | X) = m(c, \bar{X}(c)) \text{ for some measurable function } m.
\]

If \(C \) is continuous, then a practical and useful submodel \(\mathcal{G} \subset \mathcal{G}(\text{CAR}) \) is the multiplicative intensity model w.r.t. the Lebesgue measure

\[
E(dA(t) | \bar{A}(t-), \bar{X}(\min(t,C))) = I(\bar{T} > t) \lambda_0(t) \exp \left(\alpha_0^T W(t) \right),
\]

where \(\alpha_0 \) is a \(k \)-dimensional vector of coefficients, \(W(t) \) is a \(k \)-dimensional time-dependent vector that is a function of \(\bar{X}(t) \), and \(\lambda_0 \) is an unspecified baseline hazard. Note that

\[
\lambda_C(t | X, T > t) \equiv \lambda_0(t) \exp(\alpha_0^T W(t))
\]

denotes the Cox proportional hazards model for the conditional hazard \(\lambda_C \).

If we knew that the censoring was independent of the survival time and the history, then, for \(t < T \), this would reduce to

\[
\lambda_C(t | X) = \lambda_0(t).
\]

If \(C \) is discrete, then a natural model \(\mathcal{G} \subset \mathcal{G}(\text{CAR}) \) is

\[
E(dA(t) | \bar{A}(t-), \bar{X}(\min(t,C))) = I(\bar{T} \geq t) \frac{1}{1 + \exp(-\{h_0(c) + \alpha_0^T W(t)\})},
\]

where \(h_0 \) could be left unspecified. This corresponds with assuming a logistic regression model for the conditional censoring hazard \(\lambda_C(t | X) = P(C = t | X, C \geq t) \): for \(t < T \)

\[
\log \left(\frac{\lambda_C(t | X)}{1 - \lambda_C(t | X)} \right) = h_0(t) + \alpha_0^T W(t).
\]

If the support of \(C \) gets finer and finer so that \(P(C = t | X, C \geq t) \) approximates zero, then this model with \(h_0 \) unspecified converges to the Cox proportional hazards model with \(\lambda_0 = \exp(h_0) \) and regression coefficients \(\alpha_0 \) (see e.g., Kalbfleisch and Prentice, 1980).

Whatever CAR model for \(\lambda_C(t | X) \) is used, the \(G \) part of the density of \(P_{F_X,G} \) in terms of \(\lambda_C(t | X) \) is given by the partial likelihood of \(A(t) = I(C \leq t) \) w.r.t. history \(F(t) \equiv (\bar{A}(t-), \bar{X}(\min(t,C))) \) as defined in Andersen, Borgan, Gill and Keiding (1993) for the continuous case. Let