To formalize this, recall that an unbiased estimating function \(D(X \mid \mu) \) that does not depend on any nuisance parameters is a \(k \)-dimensional vector function of the data \(X \) and the parameter \(\mu \in \mathbb{R}^k \) that has mean zero under all \(F_X \) in \(\mathcal{M}^F \); that is, \(E_{F_X} D(X \mid \mu(F_X)) = 0 \). More generally, an estimating function \(D(X \mid \mu, \rho) \) can also depend on a parameter \(\rho \) whose domain is the set \(\mathcal{R} = \{ \rho(F_X) ; F_X \in \mathcal{M}^F \} \) of possible values of a nuisance parameter \(\rho(F_X) \). In this case, \(D(X \mid \mu, \rho) \) is unbiased if

\[
E_{F_X} D(X \mid \mu(F_X), \rho(F_X)) = 0 \quad \text{for all } F_X \in \mathcal{M}^F. \quad (1.5)
\]

An estimating function \(D(X \mid \mu, \rho) \) of the dimension of \(\mu \) yields an estimating equation \(\sum_{i=1}^n D(X_i \mid \mu, \rho_n) = 0 \) for \(\mu \) by replacing the parameter \(\rho \) by an estimate \(\rho_n \) and setting its empirical mean equal to zero. We can let the estimate \(\rho_n(\mu) \) of \(\rho(F_X) \) depend on \(\mu \); when it does, we obtain the estimating equation \(\sum_{i=1}^n D(X_i \mid \mu, \rho_n(\mu)) \) for \(\mu \) that yields the asymptotics of an estimator defined by a solution of an estimating equation, it is beneficial to have that the nuisance parameter \(\rho \) be locally variation-independent of \(\mu \). We have that \(\mu \) and \(\rho \) are globally variation independent if each element of \(\{ \mu(F_X); F_X \in \mathcal{M}^F \} \times \mathcal{R} \) is equal to \(\{ \mu(F_X), \rho(F_X) \} \) for some \(F_X \in \mathcal{M}^F \).

Similarly \(\mu \) and \(\rho \) are locally variation independent if each for \(\rho \in \mathcal{M}^F \) there is a neighborhood \(\mathcal{N}(F_X) \subset \mathcal{M}^F \) (in a natural topology) such that \(\mu \) and \(\rho \) are variation independent in the local model \(\mathcal{N}(F_X) \). When \(\mu \) and \(\rho \) are not variation independent we will, when possible, reparametrize the estimating function as \(D'(X \mid \mu, \rho_n) \equiv D(X \mid \mu, \rho(\mu)) \), where \(\rho_n \) and \(\mu \) are now globally or locally variation independent. Although in many models it may not be possible to define a reparametrization that yields global variation independence, one can essentially always find a reparametrization that leads to local variation independence. It is only local variation independences that is required to simplify the asymptotics of our estimators. For notational convenience, we denote the reparametrized estimating function with \(D(X \mid \mu, \rho) \) again. That is, throughout the book, unless stated otherwise, one can take the parameters \(\mu \) and \(\rho \) to be locally variation independent.

Let \((L_0^F(F_X), (f,g)_{F_X} = E_{F_X} f(X)g(X)) \) be the Hilbert space of mean zero one-dimensional random variables with finite variance and covariance inner product. Informally, the nuisance tangent space \(T_{\text{nuis}}(F_X) \) at \(F_X \) is the subspace of \((L_0^F(F_X), (f,g)_{F_X} = E_{F_X} f(X)g(X)) \) defined as the closed linear span of all nuisance scores obtained by taking standard scores of one-dimensional parametric submodels that do not fluctuate the parameter of interest \(\mu \) (see, e.g., Bickel, Klaassen, Ritov and Wellner, 1993). More formally, let \(\epsilon \rightarrow F_{\epsilon, g} : \epsilon \) be a class of one-dimensional submodels indexed by \(\epsilon \) through \(F_X \) at \(\epsilon = 0 \), and let \(T^F(F_X) \subset L_0^F(F_X) \) be the closure of the linear span of the corresponding scores \(s(\epsilon) \) at \(\epsilon = 0 \). The nuisance tangent space is defined by \(\{s(\epsilon) \in T^F(F_X) : \frac{ds}{d\epsilon} \mid _{\epsilon=0} = 0\} \); that is, these are the scores of the 1-d models that do not vary the parameter of interest \(\mu \) to first order. We illustrate these concepts in the two regression model examples.

Example 1.3 (Repeated measures data with missing covariate; continuation of example 1.1) In this example, the full data structure model for \(X = (Z, E, V, E^*) \) is characterized by the sole restriction (1.2). The parameter of interest is \(\mu \), and all other components of the distribution \(F_Z \) represent the nuisance parameter \(\eta \). The nonparametric maximum likelihood estimator of \((\alpha, \eta) \) suffers from the curse of dimensionality so that an estimating function approach to construct estimators is useful again. Lemma 2.1 in Chapter 2 proves that the orthogonal complement of the nuisance tangent space at \((\alpha, \eta) \) is given by

\[
T_{\text{nuis}}^F(\alpha, \eta) = \{h(X^*) e(\alpha) \in L_0^F(F_X) : h(X^*) 1 \times p \}.
\]

We will now explain the sense in which the orthogonal complement of the nuisance tangent space indeed generates all estimating functions of interest based on the full data structure \(X \). The representation of the orthogonal complement \((\alpha, \eta) \rightarrow T_{\text{nuis}}^F(\alpha, \eta) \) of the nuisance tangent space as a function of \((\alpha, \eta) \) implies the following class of estimating equations for \(\alpha \): For any given \(k \times p \) matrix function \(h \) of \(X^* \), we could estimate \(\alpha \) with the solution \(\alpha_n \) of the \(k \)-dimensional estimating equation

\[
0 = \frac{1}{n} \sum_{i=1}^n h(X_i^*) e_i(\alpha). \quad (1.6)
\]

We will refer to \(h \) as an index of the estimating function. In other words, given a univariate class of estimating functions \((D_h : h \in \mathcal{H}^F) \) with \(h \times p \) such that \((D_h : | \mu(F_X, \rho(F_X)) : h \in \mathcal{H}^F \) \), we obtain a class of \(k \)-dimensional estimating functions \((D_h : \alpha \in \mathcal{H}^F) \) by defining \(h \in \mathcal{H}^F_k \), \(D_h = (D_{h_1}, \ldots, D_{h_k}) \). Recall that an estimator \(\alpha_n \) is called asymptotically linear with influence curve \(IC(X) \) if \(\alpha_n - \alpha \) can be approximated by an empirical mean of \(IC(X) \):

\[
\alpha_n - \alpha = \frac{1}{n} \sum_{i=1}^n IC(X_i) + o_P(1/\sqrt{n}).
\]

Under standard regularity conditions (in particular, on \(h \)), the estimator \(\alpha_n \), solving (1.6) is asymptotically linear with influence curve

\[
IC(h)(X) \equiv E \left\{ h(X^*) \frac{d}{da^T} g(X^* \mid \alpha) \right\}^{-1} h(X^*) e(\alpha), \quad (1.7)
\]

where \(\frac{d}{da^T} g(X^* \mid \alpha) \) is a \(p \times k \) matrix and we implicitly assumed that the determinant of the \(k \times k \) matrix \(E \left\{ h(X^*) \frac{d}{da^T} g(X^* \mid \alpha) \right\} \) is non-zero. Thus, the influence curve at \(F_X \) is a standardized version of the estimating function itself. A well-known and important fundamental result (see e.g.,